delabs Circuits

Saturday, January 17, 2009

Production Notes - Prototype Fabrication - 03

Prototype Fabrication

Sometimes a component can be defective, may not be what it is labeled or may be of a wrong value. In manufacturing 100% incoming inspection of components can catch these errors, Before Assembly of prototypes just test all passive and active components with a DMM and put all ICs in bases, then troubleshooting is easy.

  • When you make your prototype check diode and el-cap polarity, check pin 1 of chips and connectors, resistor values, dry solder and loose contacts, hairline cuts or shorts, e-b-c etc. of Transistors, FETs and thyristors.
  • Observe color code in wires. positive is red and negative is black and green is earth and See Wire Color Code.
  • When you are soldering or cutting leads, room should have cross ventilation, protective glasses for eyes and a good stand.
  • When using a sharp blade the cutting stroke must move away from you and make sure nobody is close, Wear protective or even plain glasses, If you use a blade with the stroke moving towards your body it will cut badly.
  • Power tools and machinery must be used only after exhaustive training and with safety precautions. The power tools used carelessly and wrongly can cause an injury which will last a lifetime or may even handicap you.
  • Have a lathe lamp or table lamp with a 40W edison-filament lamp (ordinary bulb) on your workbench.
  • Have an antistatic mat on the work or test table, if you cannot afford or get it then get a large aluminum sheet, laminate it with an insulating polycarbonate sheet and earth the metal plate with two 1M resistors in series.
  • Use thin multi strand teflon wires for your jumpers within a PCB, these are not damaged by your iron too.
  • Silicone shrink sleeves can withstand high temperature and use this in your work to make it safer and neat.
  • When you make a connection with a wire you need mechanical strain relief or on use connection will open.

Soldering and Desoldering Tips

Use the soldering iron as a heat transfer tool, heat the junction of the lead of the component and the copper pad on pcb then touch the hot junction with a flux cored soldering lead wire, it should melt and form a concave shining joint. If air bubbles are formed or you see dull convex joints, then it means you have a dry solder and bad contact. Leads of old components due to exposure to moisture, brine or sunshine will corrode, store them well cool-dry-clean-air. Anyway scratch them with a blade and solder them with extra flux.

When you are desoldering a double sided pcb, use a desoldering pump or desoldering wick. Heat a joint to be desoldered and then quickly tap it hard on the table, the molten lead will fall off.

Contents

Basic Electronics
Basics of Electronics
Product Production
Work Discipline
Testing Points
Learning Electronics
Electronics Theory

Production Notes
Prototype Fabrication
Electrical Circuits
Electromechanical


Library
Scots Guide Electronics
Engineering - Wikibooks
Design Lab - Jim Svoboda
DC Circuits UOG
Socratic Electronics
Blobz Guide Electric Circuits


Product Design
Product Development
Constant Current Source
Good Voltage Regulators
Insulation Resistance
Digital Insulation Tester
DN Schematic PCB 04
DN Product Design 07


Hobby Circuits
VU Meter Circuits
LED brightness control
555 Incredible Chip
Process Control
liquid level measurement
Thermocouples and RTD
Design ADC Interface uC
Thermocouple Amplifier
IA Instrumentation 02
Temperature on DMM
Optical Proximity Switch
Analog Mux - Data Acquisition


Test Measurement
Instrumentation Automation
NI Test and Measurement
DMM Digital Multi Meter
Oscilloscope in T&M
IA Automation 01
Build Instruments
Tektronix T&M Equipment
Educators Corner – Agilent


Power Electronics
UPS Background
Transformer Connections
DN Power Electronics 03
DN Power Electronics 02
Half Bridge Convertor SG3525


Embedded
Interfacing Microcontrollers
Embedded Process Control
80C31 8052 Microcontroller
Microprocessors and uC
Embedded Systems Design

Components
Good Voltage Regulators
Relays and Contactors
Potentiometers Trimpots
Prototype Boards Types
Types of Capacitors
Types of Switches
Resistors How they Work
Coils Transformers SMPS
Mains Transformers Types
DN Components Selection 05

Tutor Gadgets
Count-Up Timer
Digital Logic Gates
Electronics Tutors

History
Teaching Instruments
Charles Proteus Steinmetz
Muntzing a Circuit Design
Teralab Electronics projects
Historical Instruments


Tables, Charts, Videos
Binary and Hex
Resistor Color Code
Ohms Law
Giga, Tera, Pico, Nano
High Resistance Materials

Analog
School - Analog Design
DN Analog Basics 06
DN Op-Amps 01
TI Semiconductors