Wednesday, April 01, 2009

Two Set Point - Display Card - Process Controller

This is the pcb board details of a Two Set Point Controllers for any process, shown here for temperature. For new types of transducers or input types, module card has to be designed or modified. The other cards remain the same.

The cabinet of these process controllers were made of steel for shielding, but the display card would still pickup EMI in some cases. These were more in instances where the Instrument supply was derived from the motor 3-phase supply. Instrumentation Supplies 230V AC must come from a Lighting Circuit of another supply arm, this has to come after conditioning with EMI-RFI filters and Servo Stabilizers or UPS if possible. This way the load spikes-glitches due to turn-on and turn-off of Motors and Heaters. dont act as a feedback to instruments. If line-load regulation is bad and mains voltage unstable, more problems can be expected.

This front panel shielding was done with a semi farady cage, by having a ground plane on the front of PCB, facing operator. This is just the negative of solder mask, but is the copper layer in front, no pth processing, even though it is two layer pcb. The solution worked well.

Display Card - Shield

Proportional Module for Process Controller

When you need a proportional control output, either 4-20mA or Time Proportional On-Off, This module is used. It does a slow PWM control, the cycle time for SSR or Thyristor Banks can be closer to Mains Frequency. The 4-20mA can be used to drive motors for turning valves for fuel or fluid heat control.

Schematics of Module

Board of Module

Thermocouple and Current Input Module

This input module converts J, K Thermocouple and 4-20 mA Inputs to 0-2V Full Scale. These can be used for any voltage/current inputs too. The RTD module can be modified more easily for Voltage inputs. The control output can be On-Off or 4-20 mA/Proportional with another card. The 4-20mA I/O STC1000I is not complete in documentation.

This is a Input Signal Conditioning Card for the Temperature controller. The voltage levels from sensors are either too low or need to be translated in level and span. Then for greater accuracy some linearization methods have to be used for a more precise reading. This also increases the cost. The circuits here do no cover the linearization see others in this and my related pages.

The step or segment linearization can be done by transistor, diode or CMOS switches to accomplish varying attenuation/gain for stages of the curve or voltage levels. In Microcontroller systems it can be done by lookup tables or math.

In some older digital systems without a MCU, the A to D drives the address of an Eprom Array to get a Digital Data for Display, as a linearized Reading. This Corrected Data was in turn made into analog using a D/A and then on to a Chart Recorder. This was a Logic only System of the early days. Microprocessor systems was expensive, power consuming and use to frighten people by getting lost in loops or a short nap.(they have fixed that, make sure you code properly).

Input Module - J and K Thermocouple with 4-20 mA

Input Module - J and K Thermocouple with 4-20 mA

PCB Boards of the Module

Contents

Basic Electronics
Basics of Electronics
Product Production
Work Discipline
Testing Points
Learning Electronics
Electronics Theory

Production Notes
Prototype Fabrication
Electrical Circuits
Electromechanical


Library
Scots Guide Electronics
Engineering - Wikibooks
Design Lab - Jim Svoboda
DC Circuits UOG
Socratic Electronics
Blobz Guide Electric Circuits


Product Design
Product Development
Constant Current Source
Good Voltage Regulators
Insulation Resistance
Digital Insulation Tester
DN Schematic PCB 04
DN Product Design 07


Hobby Circuits
VU Meter Circuits
LED brightness control
555 Incredible Chip
Process Control
liquid level measurement
Thermocouples and RTD
Design ADC Interface uC
Thermocouple Amplifier
IA Instrumentation 02
Temperature on DMM
Optical Proximity Switch
Analog Mux - Data Acquisition


Test Measurement
Instrumentation Automation
NI Test and Measurement
DMM Digital Multi Meter
Oscilloscope in T&M
IA Automation 01
Build Instruments
Tektronix T&M Equipment
Educators Corner – Agilent


Power Electronics
UPS Background
Transformer Connections
DN Power Electronics 03
DN Power Electronics 02
Half Bridge Convertor SG3525


Embedded
Interfacing Microcontrollers
Embedded Process Control
80C31 8052 Microcontroller
Microprocessors and uC
Embedded Systems Design

Components
Good Voltage Regulators
Relays and Contactors
Potentiometers Trimpots
Prototype Boards Types
Types of Capacitors
Types of Switches
Resistors How they Work
Coils Transformers SMPS
Mains Transformers Types
DN Components Selection 05

Tutor Gadgets
Count-Up Timer
Digital Logic Gates
Electronics Tutors

History
Teaching Instruments
Charles Proteus Steinmetz
Muntzing a Circuit Design
Teralab Electronics projects
Historical Instruments


Tables, Charts, Videos
Binary and Hex
Resistor Color Code
Ohms Law
Giga, Tera, Pico, Nano
High Resistance Materials

Analog
School - Analog Design
DN Analog Basics 06
DN Op-Amps 01
TI Semiconductors

Search This Blog