delabs Circuits

Showing posts with label Digital-Gadgets. Show all posts
Showing posts with label Digital-Gadgets. Show all posts

Wednesday, February 11, 2015

Basic Digital Electronics Tutors

These Digital Tutors are interactive and started with very basic JavaScript and CSS. You can operate the controls and see the Truth Table and Results in LED Displays. Controls include DIP Switches and Push Buttons.

Tutorials on Digital Electronics

Digital Electronics Interactive Tutors

In Electronics Theory Section


Here is a Snapshot of a Live iGoogle Page showing a Digital Preset counter Gadget in Canvas view.
Other Gadgets are Logic Gates Tutor and Digital Timer

Saturday, March 29, 2008

Digital Count-Up Timer Gadget

Here is is Digital Timer Learning Gadget. The buttons make a sound and Light up internal LED lamps. Power On-Off control, Digital Timer; Start, Reset Scroll and Select are the controls. This will simulate the operation of a microcontroller based digital timer.

Project Page programmable-digital-timer



Press The Power on-off for a soft start, this is to prevent the inrush current from stressing the javascript components. Then it goes to a display test. The Start button can run or stop timer by toggling. The reset will Bring timer to 0000, format is min-sec.

Set by pressing select to get a marker over orange digit, Use Scroll to set number. Press Start to start timer, Start to be off to set again. The buzzer will turn on when Time elapsed matches time set. and the alarm relay trips. And a Flashing Annunciator signals end of process. Now Reset will start process again and stop flashing LED.
Digital Count-Up Timer Gadget

To use this like a regular instrument, you need a small portable hand-held computer with browser. Fix that in a Cabinet by filing or grinding it to size and wire the relays and supply. :-)

Thursday, March 27, 2008

Learn Digital Logic Gates Operation

The Gate is a digital component that is used to compute an output for certain inputs, the inputs and outputs have two states high-1 and low- 0. Let us assume high is 5V and low is 0V (like in CMOS). On a high level the LED will light up and on a low level the LED is off. Now let us see what Logic means.

Screenshot of Widget

Learn Digital Logic Gates Operation

Digital Logic Gates
Gates are what make many of ICs, the two popular families are the 40xx CMOS and the 74xx TTL . Now 40xx come in 74HCT40xx flavors which approach the quality of an ideal gate. Entire circuits with Gates can also be also be burnt into PLDs, FPGAs and CPLDs just like you burn your CDROM. Gates can also be implemented in assembly language which a microcontroller like 8051 will understand and execute.

Hardware gate circuit will operate in real time, nano seconds delay will be there due to propagation delay, gate capacitance and FET switching times etc. Software or microcontroller gates code working will depend on both propagation delay and the CPU clock speed.

digital-tutors - project page.

Gates can be combined to make combinational or sequential logic circuits. combinational circuits are a complex network of gates interconnected to evaluate a pattern of output for patterns of input. Sequential circuits use memory elements hence output patterns depend both on input patterns and the memory of history of events. An example of combinational logic circuit is a seven segment display decoder CD4511 and and example for a sequential logic circuit is CD4029 up-down counter.

The CD40xx CMOS family can work at even 3V-9V-12V DC and consume low power. The speed is not as fast as 74xx TTL family. It is good for simple portable battery powered circuits. The 74HCTxx series is good for low power and high speed but will work at 5V. When you have problems interfacing CMOS and TTL use 74HCTxx family.

Contents

Basic Electronics
Basics of Electronics
Product Production
Work Discipline
Testing Points
Learning Electronics
Electronics Theory

Production Notes
Prototype Fabrication
Electrical Circuits
Electromechanical


Library
Scots Guide Electronics
Engineering - Wikibooks
Design Lab - Jim Svoboda
DC Circuits UOG
Socratic Electronics
Blobz Guide Electric Circuits


Product Design
Product Development
Constant Current Source
Good Voltage Regulators
Insulation Resistance
Digital Insulation Tester
DN Schematic PCB 04
DN Product Design 07


Hobby Circuits
VU Meter Circuits
LED brightness control
555 Incredible Chip
Process Control
liquid level measurement
Thermocouples and RTD
Design ADC Interface uC
Thermocouple Amplifier
IA Instrumentation 02
Temperature on DMM
Optical Proximity Switch
Analog Mux - Data Acquisition


Test Measurement
Instrumentation Automation
NI Test and Measurement
DMM Digital Multi Meter
Oscilloscope in T&M
IA Automation 01
Build Instruments
Tektronix T&M Equipment
Educators Corner – Agilent


Power Electronics
UPS Background
Transformer Connections
DN Power Electronics 03
DN Power Electronics 02
Half Bridge Convertor SG3525


Embedded
Interfacing Microcontrollers
Embedded Process Control
80C31 8052 Microcontroller
Microprocessors and uC
Embedded Systems Design

Components
Good Voltage Regulators
Relays and Contactors
Potentiometers Trimpots
Prototype Boards Types
Types of Capacitors
Types of Switches
Resistors How they Work
Coils Transformers SMPS
Mains Transformers Types
DN Components Selection 05

Tutor Gadgets
Count-Up Timer
Digital Logic Gates
Electronics Tutors

History
Teaching Instruments
Charles Proteus Steinmetz
Muntzing a Circuit Design
Teralab Electronics projects
Historical Instruments


Tables, Charts, Videos
Binary and Hex
Resistor Color Code
Ohms Law
Giga, Tera, Pico, Nano
High Resistance Materials

Analog
School - Analog Design
DN Analog Basics 06
DN Op-Amps 01
TI Semiconductors